4 research outputs found

    Vorhersagbares und zur Laufzeit adaptierbares On-Chip Netzwerk für gemischt kritische Echtzeitsysteme

    Get PDF
    The industry of safety-critical and dependable embedded systems calls for even cheaper, high performance platforms that allow flexibility and an efficient verification of safety and real-time requirements. To cope with the increasing complexity of interconnected functions and to reduce the cost and power consumption of the system, multicore systems are used to efficiently integrate different processing units in the same chip. Networks-on-chip (NoCs), as a modular interconnect, are used as a promising solution for such multiprocessor systems on chip (MPSoCs), due to their scalability and performance. For safety-critical systems, a major goal is the avoidance of hazards. For this, safety-critical systems are qualified or even certified to prove the correctness of the functioning under all possible cases. A predictable behaviour of the NoC can help to ease the qualification process of the system. To achieve the required predictability, designers have two classes of solutions: quality of service mechanisms and (formal) analysis. For mixed-criticality systems, isolation and analysis approaches must be combined to efficiently achieve the desired predictability. Traditional NoC analysis and architecture concepts tackle only a subpart of the challenges: they focus on either performance or predictability. Existing, predictable NoCs are deemed too expensive and inflexible to host a variety of applications with opposing constraints. And state-of-the-art analyses neglect certain platform properties to verify the behaviour. Together this leads to a high over-provisioning of the hardware resources as well as adverse impacts on system performance, and on the flexibility of the system. In this work we tackle these challenges and develop a predictable and runtime-adaptable NoC architecture that efficiently integrates mixed-critical applications with opposing constraints. Additionally, we present a modelling and analysis framework for NoCs that accounts for backpressure. This framework enables to evaluate the performance and reliability early at design time. Hence, the designer can assess multiple design decisions by using abstract models and formal approaches.Die Industrie der sicherheitskritischen und zuverlässigen eingebetteten Systeme verlangt nach noch günstigeren, leistungsfähigeren Plattformen, welche Flexibilität und eine effiziente Überprüfung der Sicherheits- und Echtzeitanforderungen ermöglichen. Um der zunehmenden Komplexität der zunehmend vernetzten Funktionen gerecht zu werden und die Kosten und den Stromverbrauch eines Systems zu reduzieren, werden Mehrkern-Systeme eingesetzt. On-Chip Netzwerke werden aufgrund ihrer Skalierbarkeit und Leistung als vielversprechende Lösung für solch Mehrkern-Systeme eingesetzt. Bei sicherheitskritischen Systemen ist die Vermeidung von Gefahren ein wesentliches Ziel. Dazu werden sicherheitskritische Systeme qualifiziert oder zertifiziert, um die Funktionsfähigkeit in allen möglichen Fällen nachzuweisen. Ein vorhersehbares Verhalten des on-Chip Netzwerks kann dabei helfen, den Qualifizierungsprozess des Systems zu erleichtern. Um die erforderliche Vorhersagbarkeit zu erreichen, gibt es zwei Klassen von Lösungen: Quality of Service Mechanismen und (formale) Analyse. Für Systeme mit gemischter Relevanz müssen Isolationsmechanismen und Analyseansätze kombiniert werden, um die gewünschte Vorhersagbarkeit effizient zu erreichen. Traditionelle Analyse- und Architekturkonzepte für on-Chip Netzwerke lösen nur einen Teil dieser Herausforderungen: sie konzentrieren sich entweder auf Leistung oder Vorhersagbarkeit. Existierende vorhersagbare on-Chip Netzwerke werden als zu teuer und unflexibel erachtet, um eine Vielzahl von Anwendungen mit gegensätzlichen Anforderungen zu integrieren. Und state-of-the-art Analysen vernachlässigen bzw. vereinfachen bestimmte Plattformeigenschaften, um das Verhalten überprüfen zu können. Dies führt zu einer hohen Überbereitstellung der Hardware-Ressourcen als auch zu negativen Auswirkungen auf die Systemleistung und auf die Flexibilität des Systems. In dieser Arbeit gehen wir auf diese Herausforderungen ein und entwickeln eine vorhersehbare und zur Laufzeit anpassbare Architektur für on-Chip Netzwerke, welche gemischt-kritische Anwendungen effizient integriert. Zusätzlich stellen wir ein Modellierungs- und Analyseframework für on-Chip Netzwerke vor, das den Paketrückstau berücksichtigt. Dieses Framework ermöglicht es, Designentscheidungen anhand abstrakter Modelle und formaler Ansätze frühzeitig beurteilen

    Data-Age Analysis and Optimisation for Cause-Effect Chains in Automotive Control Systems

    Get PDF
    Automotive control systems typically have latency requirements for certain cause-effect chains. When implementing and integrating these systems, these latency requirements must be guaranteed e.g. by applying a worst-case analysis that takes all indeterminism and limited predictability of the timing behaviour into account. In this paper, we address the latency analysis for multi-rate distributed cause-effect chains considering staticpriority preemptive scheduling of offset-synchronised periodic tasks. We particularly focus on data age as one representative of the two most common latency semantics. Our main contribution is an Mixed Integer Linear Program-based optimisation to select design parameters (priorities, task-to-processor mapping, offsets) that minimise the data age. In our experimental evaluation, we apply our method to two real-world automotive use cases

    Real-Time Analysis of Priority-Preemptive NoCs with Arbitrary Buffer Sizes and Router Delays

    Get PDF
    Nowadays available multiprocessor platforms predominantly use a network-on-chip (NoC) architecture as an interconnect medium, due to its good scalability and performance. During the last decade, NoCs received a significant amount of attention from the real-time community. One promising category of approaches suggests to employ already existing hardware features called virtual channels, and dedicate them, exclusively, to individual communication traffic flows. In this way, NoCs become more amenable to the real-time analysis, which is an essential requirement for providing both safe and tight worst-case analysis methods, and consequently deriving real-time guarantees. In this manuscript, we present the approach which falls in the aforementioned category. Specifically, we propose a novel method for the worst-case analysis of the NoC traffic, assuming the existence of per-flow dedicated virtual channels. Compared to the state-of-the-art techniques, our approach yields substantially tighter upper-bounds on the worst-case traversal times (WCTTs) of communication traffic flows. By employing the proposed method, resource over-provisioning can be mitigated to a large extent, and significant design-cost reductions can be achieved. Moreover, we implemented a cycle-accurate simulator of the assumed NoC architecture, and used it to assess the tightness of derived WCTT bounds. Finally, we reached an interesting conclusion that bigger virtual channel buffers do not necessarily lead to better results, and in many cases can be counter-productive, which is a very important finding for system designers
    corecore